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Anthropic Approach to the Cosmological
Constant Problems
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There are now two cosmological constant problems: (i) why the vacuum energy is
so small and (ii) why it comes to dominate at about the epoch of galaxy formation.

Anthropic selection appears to be the only approach that can naturally resolve both
problems. Here | review this approach, emphasizing the testable predictions that it
makes for the dark energy density and for its equation of state.
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1. INTRODUCTION

The cosmological constant problem is one of the most intriguing mysteries
that we are now facing in theoretical physics. Until recently, there was only one
cosmological constant problem and hardly any solutions. Now, within the scope
of a few years, we have made progress on both accounts. We now have two
cosmological constant problems (CCPs) and a number of proposed solutions. Here,
| am first going to describe what the problems are and then comment on some of
the solutions. My main focus will be on the anthropic approach, which I will argue
is the only one that naturally resolves both CCPs.

Anthropic arguments are sometimes perceived as handwaving and unpredic-
tive lore of questionable scientific value. One of my goals here is to dispel this
notion. | am going to discuss several quantitative predictions that follow from the
anthropic approach and which can soon be checked against upcoming observations.
This review is based mostly on the work I did in collaboration with Jaume Garriga.

2. THE PROBLEMS

The cosmological constant is (up to a factor) the vacuum energy demgsity,
Particle physics models suggest that the natural value for this constant is set by the
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Planck scaléMp,
pv ~ Mg~ (10 GeV)*, (1)
which is some 120 orders of magnitude greater than the observational bound,
pv S (10%eV)t 2)
In supersymmetric theories, one can expect a lower value,

oV ~ Ndusys 3

wherensusy is the supersymmetry breaking scale. However, wihsy = 1 TeV,

this is still 60 orders of magnitude too high. This discrepancy between the expected
and observed values is the first cosmological constant problem. | will refer to it as
the old CCP.

Until recently, it was almost universally believed that something so small
could only be zero, due either to some symmetry or to a dynamical adjustment
mechanism. (For a review of the early work on CCP, see (Weinberg, 1989).) It
therefore came as a surprise when recent observations (Perlmiugker1997,

1998; Riesgtal, 1998; Schmideét al,, 1998) provided evidence that the universe is
accelerating, rather than decelerating, suggesting a nonzero cosmological constant.
The observationally suggested value is

pv ~ puo ~ (1073 eV)?, 4)

wherepyo is the present density of matter. This brings yet another puzzle. The
matter densityoy and the vacuum energy denspy scale very differently with

the expansion of the universe, and there is only one epoch in the history of the
universe whemy ~ pv. Itis difficult to understand why we happen to live in this
special epoch. Another, perhaps less anthropocentric statement of the problem is
why the epoch when the vacuum energy starts dominating the unigrse 1)

nearly coincides with the epoch of galaxy formatiag ¢ 1-3), when the giant
galaxies were assembled and the bulk of star formation has occurred:

ty ~ tg. )

This is the so-called cosmic coincidence problem, or the second CCP.

3. SOME PROPOSED SOLUTIONS
3.1. Quintessence an#i-Essence

Much of the recent work on CCP involves the idea of quintessence (Caldwell
et al, 1998; Peebles and Ratra, 1988; Wetterich, 1988; Zlateal, 1999).
Quintessence models require a scalar figldith a potentialV (¢) aproaching
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zero at large values @f. A popular example is an inverse power law potential,
V(p) = M*Fg~F, (6)

with a constantM <« Mp. It is assumed that initially <« Mp. Then it can be
shown that the quintessence figldipproaches an attractor “tracking” solution,

(1) oc t2HP), (7)
in which its energy density grows relative to that of matter,
Py/pm ~ ¢°/ME. ©)

When¢ becomes comparable #dp, its energy dominates the universe. At this
point the nature of the solution changes: the evolutiop gfows down and the
universe enters an epoch of accelerated expansion. The mass pafdncatebe
adjusted so that this happens at the present epoch.

A nice feature of the quintessence models is that their evolution is not sen-
sitive to the choice of the initial conditions. However, | do not think that these
models solve either of the two CCPs. The poter¥i&b) is assumed to vanish in
the asymptotic rang¢ — oo. This assumes that the old CCP has been solved by
some unspecified mechanism. The coincidence problem also remains unresolved,
because the time of quintessence domination depends on the choice of the param-
eter M, and there seems to be no reason why this time should coincide with the
epoch of galaxy formation.

A related class of models involvéisessence, a scalar field with a nontrivial
kinetic term in the Lagrangian (Armeadz-Piconet al.,, 2000),

L = ¢ *K[(Ve)T]. 9)

For a class of functionk (X), the energy density d-essence stays at a constant
fraction of the radiation energy density during the radiation era,

¢/ Prad X CONSt, (10)

and starts acting as an effective cosmological constant with the onset of matter
domination. The functiofk (X) can be designed so that the constant in Eq. (10)
is <1072, thus avoiding conflict with nucleosynthesis, and tkagssence comes

to dominate az ~ 1.

This is an improvement over quintessence, since the accelerated expansion
in this kind of models always begins during the matter era. Galaxy formation can
also occur only in the matter era, but still there seems to be no reason why the two
epochs should coincide. The epochkeéssence dominatiar, is determined by
the form of the functiork (X), and the epoch of galaxy formatiag is determined
by the amplitude of primordial density fluctuatior®,= §p/p ~ 107°. It is not
clear why these seemingly unrelated quantities should gjive zg within one
order of magnitude. And of course the old CCP also remains unresolved.
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3.2. A Small Cosmological Constant From Fundamental Physics

One possibility here is that some symmetry of the fundamental physics re-
quires that the cosmological constant should be zero. A small valge obuld
then arise due to a small violation of that symmetry. One could hopethabuld
be given by an expression like

pv ~ MG/MZ ~ (10 °eV)*, (11)

where My, ~ 10® GeV is the electroweak scale. There have been attempts in
this direction (Arkani-Hamedet al, 2000; Frampton, 2000; Guendelman and
Kaganovich, 2000; Kachraet al, 1999), but no satisfactory implementation of
this program has yet been developed.

An interesting idea based on braneworld models has been recently suggested
by Dvaliet al.(2002). They consider a brane in an infinite higher-dimensional bulk
space, with supersymmetry broken on the brane, but not in the bulk. In models
with more than two extra dimensions, they find that, surprisingly, the effective
cosmological constant on the brashecreasesas the brane tension is increased. A
very small cosmological constant can be obtained when the brane tension is very
large.

It is conceivable that the old CCP may eventually be resolved in this type
of models, but even then, the time coinciderige~ tg would still remain a
mystery.

4. ANTHROPIC APPROACH

Both CCPs find a natural resolution in models whayés a random variable.
The idea is to introduce a dynamical dark energy compodenthose energy
densitypy varies from place to place, because of stochastic processes that occured
inthe early universe. (Specific models ferwill be discussed below.) The effective
cosmological constant is then given by

pv = pAa + Px, (12)

wherep, ~ ngUSY is the constant vacuum energy density. The cosmological con-
stant problem now takes a different form. The question is notpyhig very small
(it is not), but why we happen to live in a region wherg is nearly cancelled
by px.
The key observation, due to Weinberg, is that the gravitational clustering that
leads to galaxy formation effectively stopszat- z,. An anthropic bound ompy
can be obtained by requiring that it does not dominate before the regighifthen
the earliest galaxies are formed. Wi§s ~ 5 one obtains (Weinberg, 1987)

VS — Pmo- (13)
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For negative values gy, a lower bound can be obtained by requiring that the
universe does not recollapse before life had a chance to develop (Barrow and Tipler,
1986; Garriga and A. Vilenkin, 2002; Kallosh and Linde, 2002),

oV 2 —PMo- (14)

The bound (13) is a dramatic improvement over (1) or (3), but it still falls short
of the observational bound by a factor of about 50. If all values in the anthropic
range (13) were equally probable, then~ pmo would still be ruled out at a 90%
confidence level. However, the values in this rangenatequally probable.

The anthropic bound (13) specifies the valuepgf which makes galaxy
formation barely possible. Most of the galaxies will be notin regions characterized
by these marginal values, but rather in regions whegrdominates after the bulk
of galaxy formation has occured, that is

zy S (15)

Regions withzy « zg will be rare, simply because they correspond to a very
narrow rangdpy| < pmo- Hence, we expect that a typical galaxy is located in a
region wherez, ~ zg. This explains the time coincidence (5) (Bludman, 2000;
Garrigaet al, 2000). The expected value pf is thus

ov ~ (1 + 25)%pmo. (16)

The galaxy formation epodty; depends on the type of galaxy. In the standard cold
dark matter cosmology, galaxy formation is a hierarchical process, with smaller
objects merging to form more and more massive ones. We know from observations
that some galaxies already existed at 5, and the theory predicts that some dwarf
galaxies and dense central parts of giant galaxies could form as earb 49

or evenz = 20. With such values dofs, the dark energy density (16) would be far
greater than observed. The agreement becomes much better if we assume that the
conditions for civilizations to emerge arise mainly in giant galaxies, which form
at low redshiftszs < 1. Forzg ~ 1, Eq. (16) gives (Efstathiou, 1995; Vilenkin,
1995) py ~ 8pmo andQy ~ 0.9. We shall improve on this rough estimate in the
next section.

It is not clear how the conditiors ~ 1 is to be justified. A suggesive obser-
vation is that we live in a disk of a giant spiral galaxy, and it is known that the
galactic discs were assembledzgt 1 (Abraham and van der Bergh, 2001). Butin
any case, if the CCPs have an anthropic resolution, then, for one reason or another,
the evolution of intelligent life should require conditions which are found mainly
in giant galaxies, which completed their formatiorzgf 1. This is a prediction of
the anthropic approach.

The analysis can be made more quantitative by introducing the probability
distributionP(pv) dpy, defined as being proportional to the number of indepen-
dent observers who will measupg in the intervaldpy. This distribution can be
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represented as a product (Garriga and Vilenkin, 2002; Vilenkin, 1995)

P(pv) = Pi(ov)nc(ov)Nobs(ov). (17)

Here,P.(pov) dpy is the prior distribution, which is proportional to the (comov-
ing) volume of those parts of the universe whexetakes values in the inter-
val doy, ng(pv) is the number of galaxies that form per unit comoving vol-
ume with a given value opy, and Nopqov) is the number of observers per
galaxy.

The distribution (17) gives the probability that a randomly selected observer
is located in a region where the effective cosmological constant is in the interval
doy. If we are typical observers, then we should expect to observe a vaje of
somewhere near the peak of this distribution.

The prior distributionP,(ov) should be determined from the inflationary
model of the early universe. Weinberg (1997, 2000a,b) has argued that a flat
distribution

P.(pv) = const, (18)

should generally be a good approximation. The reason is that the furigt{pn)
is expected to vary on some large particle physics scale, while we are only inter-
ested inits values in the tiny anthropically allowed range (13). Analysis shows that
this Weinberg’s conjecture is indeed true in a wide class of models, but one finds
that it is not as automatic as one might expect (Garriga and Vilenkin, 2000a,b,
2002).

Of course, we have no idea how to estimbitgs, but it seems reasonable to
expect that it does not sensitively dependmnin the narrow range of interest,
Nobs(ov) ~ const. Then the distribution (17) reduces to

P(pv) o na(pov). (19)

The calculation ofig(pv) is a standard astrophysical problem; it will be reviewed
in the next section.

5. PREDICTIONS FOR Qy

Martel et al. (1998) (see also Efstathiou, 1995; Weinberg, 1997) presented
a detailed calculation aig(pv) using the Press—Schechter formalism (Press and
Schechter, 1974). They assumed a Gaussian density fluctuatiod(fietdl with
a variances (t) on the galactic scaleM = 10%°M,),

P(3) o <_%j(t)) | (20)



Anthropic Approach to the Cosmological Constant Problems 1199

A galaxy forms when the linearized density contr&sixceeds the critical value
3¢ ~ 1.6. The comoving density of galaxies can be found from

Ne(ov) o< P(8 > 8¢, t — o0) = : dsP(8) = erfc(£;w> , (21)

whereoy, = o(00)

To estimater,, we note that prior to the dark energy dominatibrg ty, the
scale factor behaves agt) oc t%2, and the density fluctuations grow ast) o
a(t) oc t?3. At t > ty, the scale factor grows exponentially and the growth of
density fluctuations freezes,~ o,,. Choosing the time of recombinatidg. as
our reference time, we can write

tv 23 Prec 13
0o ’\‘O’rec(_) ’\‘O’rec(_> . (22)
trec PV
Finally, substituting this to (21) and (19), we obtain
Ppv) x erfc(y), (23)
where
k [ ov\"°
v=o () (24
Orec \ Prec

andk ~ 1. A careful analysis gives (Martet al,, 1998)k ~ 0.8.
The distributiond?/ d(Iny) is a bell-shaped function with a maximum at
y ~ 1 (see Fig. 1). More precisely, we expgct 0.79 with probability

P(y > 0.79)= 0.68 (1o confidence level) (25)
dP/dln vy
0.08} /\\
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Fig. 1. The distribution (23).
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andy > 0.07 with probability
P(y > 0.07)=0.95 (% confidence level) (26)

Extracting predictions for the dark energy density param@tefrom Egs.

(23) and (24) would be straightforward if we had an independent measurement of
the density contrast at recombinatief.. However, we do not presently have such

a measurement. The value @f. can be inferred from the CMB measurements,
but for this task both the present valugnf and the value of the Hubble parameter

h would be needed. Thus, apart from the explicit dependengeaf2y through
ov/prec = (L + Ze) 3Qv (1 — Qv) 71, there is also an implicit dependence®@n

and h throughoe.. The latter dependence can be obtained using the standard
formulas given in (Liddle and Lyth, 2000).

The contour lines of the functiop(2y, h) corresponding to thesland 2
predictions (Garriga and Vilenkin, 2002) are shown in Fig. 2. (Note that the the
notation$2p for the dark energy density in the figure differs from the notafign
that we use in the text.) The excluded region lies to the left of the curves. We see
that the currently favored valu&s, ~ 0.7, h ~ 0.7 are virtually excluded at the

h

Fig. 2. Contours of the functiog(Q2y, h), corresponding to theol
(lower curves) and @ (upper curves) predictions. The excluded
region lies to the left of the curves. The thick solid lines assume
that the dominant contribution tdypsis in galaxies of mass =
10"2Mg,. For comparison, we show the predictions for different
choices of the mass. The short dashed curves correspond to the
mass of the local groum, g = 4 x 10*2Mg, and the long dashed
curves correspond to the mass of the bright inner part of our galaxy
M = 10''My. A scale invariant spectrum of density perturbations

is assumed.
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20 level. Instead, the anthropic approach favors higher valugd,odnd lower
values ofh.

The functiony(Qy, h) has some dependence on the spectral imdekthe
fluctuation spectrum. A scale-invariant spectmie 1 is assumed inthe figure, but
the results are essentially unchangedig varied by a few percent. For example,
for n > 0.95 andh > 0.65, the b prediction isQ2y > 0.79.

The observational situation at this time is far from being clear. CMB and
supernovae measurements yigg ~ 0.7 (Percivalet al,, 2002; Perimutteet al,,
1997, 1998; Riesst al,, 1998; Schmidet al, 1998; Sievert al,, 2002), while
the observations of galaxy clustering gi2g ~ 0.8 (Bahcallet al, 2002).

6. MODELS WITH VARIABLE py
6.1. Scalar Field Models

As we saw in the preceeding sections, the anthropic approach naturally re-
solves both. CCPs, but it does require a particle physics model that would provide
a dynamical dark energy compongnt and an inflationary cosmological model
that would give a more or less flat prior distributi®(oy) for oy = pa + px in
the anthropic range (13).

One possibility is thapy is a potentiaV (¢) of some fieldp(x) (Garriga and
Vilenkin, 2000a). The slope of the potential is assumed to be so small that the
evolution of¢ is slow on the cosmological time scale. This is achieved if the slow
roll conditions

M2V < pv < pmo, (27)
MpV' <« pv < pmos (28)

are satisfied up to the present time. These conditions ensure that the field is over-
damped by the Hubble expansion, and that the kinetic energy is negligible com-
pared with the potential energy. The fieldis also assumed to have negligible
couplings to all fields other than gravity.

Let us now suppose that there was a period of inflation in the early universe,
driven by the potential of some other field. The dynamics of the fietturing
inflation are strongly influenced by quantum fluctuations, causing different regions
of the universe to thermalize with different values¢ofSpatial variation ot is
thus a natural outcome of inflation.

The probability distributiorP,.(¢) is determined mainly by the interplay of
two effects. The first is the “diffusion” in the field space caused by quantum fluc-
tuations. The dispersion gfover a time intervalt is A¢ ~ H(H At)Y?, where
H is the inflationary expansion rate. The effect of diffusion is to make all values
of ¢ equally probable over the interval¢g. The second effect is the differential
expansion. AlthougN (¢) represents only a tiny addition to the inflaton potential,
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regions with larger values of (¢) expand slightly faster, and thus the probabil-
ity for higher values ol (¢) is enhanced. The effect of differential expansion is
negligible if (Garriga and Vilenkin, 2000b)

V72> pdo/H3M3. (29)
In this case, the probability distribution feris flat in the anthropic range,
P.(¢) = const (30)
The probability distribution for the effective cosmological constant,
pv = pa + V(9), (31)
is given by
Pulov) = P (9), (32)
and it will also be very flat, sinc¥’ is typically almost constant in the anthropic
range.

As we discussed in Sections 4 and 5, a flat prior distribution for the effective
cosmological constant in the anthropic range entails an automatic explanation for
the two cosmological constant puzzles. On the other hand, if the condition (29) is
not satisfied, then the prior probability for the field values with a higHgr) would
be exponentially enhanced with respect to the field values at the lower anthropic
end. Thiswould resultin a prediction for the effective cosmological constant which
would be too high compared with observations.

A simple example is given by a potential of the form

V() = 5129 (33)

We shall assume that, < 0, so that the two terms in (31) partially cancel one an-
other in some parts of the universe. Wijth | ~ (1 TeV)*, the slow roll conditions
(27) and (28) give

w <107 M. (34)

Thus, an exceedingly small mass scale must be introduced.
The condition (29) yields a lower bound @n

w>10"3"Mp. (35)

(Here, I have used the upper bound on the expansion rate at late stages of inflation,
H < 10-°Mp, which follows from the CMB observations.)

We thus see that models with a variaplg can be easily constructed in the
framework of inflationary cosmology. The challenge here is to explain the very
small mass scale (34) in a natural way.
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6.2. Four-Form Models

Another class of models, first discussed by Brown and Teitelboim (1988), as-
sumes that the cosmological constant is due to a four-fornt fletd® = Fe*fr?,
The field equation foF is 9, F = 0, soF is a constant, but it can change its value
through nucleation of bubbles bounded by domain walls, or branes. The total
vacuum energy density is given by

pv = pa + F?/2 (36)

and once again it is assumed that< 0. The change of the field across the brane
is AF = q, where the “chargeyj is a constant fixed by the model. Th#stakes
a discrete set of values, and the resulting spectrumyois also discrete. The
four-form model has recently attracted much attention (Batks, 2000; Bousso
and Polchinski, 2000; Donoghue, 2000; Fet@l, 2000; Garriga and Vilenkin,
2000b) because four-form fields coupled to branes naturally arise in the context of
string theory.

In the range where the bare cosmological constant is almost neutralized,
[F| = |2pa|Y?, the spectrum opy is nearly equidistant, with a separation

Apy = 2p4]%q. (37)

In order for the anthropic explanation to workpy, should not exceed the present
matter density,

Apy S pmo ~ (107%e V). (38)
With p, 2> (1T eV)4, it follows that
q<1079°M3. (39)

Once again, the challenge is to find a natural explanation for such very small values
of g.

To solve the cosmological constant problems, we have to require in addition
that (i) the probability distribution fopy at the end of inflation is nearly flat,
P.(pv) ~ const, and (ii) the brane nucleation rate is sufficiently low, so that the
present vacuum energy does not drop significantly in less than a Hubble time.
Models satisfying all the requirements can be construcled, but the conditions (i),
(ii) significantly constrain the model parameters. For a detailed discussion, see
Garriga and Vilenkin (2000b).

2The possibility that the cosmological constant could arise as a contribution of a four-form field was
first pointed out in Duff and van Nieuwenhuizen (1980).
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6.3. Explaining the Small Parameters

Both scalar field and four-form models discussed earlier have some seem-
ingly unnatural features. The scalar field models require extremely flat potentials
and the four-form models require branes with an exceedingly small charge. The
models cannot be regarded as satisfactory until the smallness of these parameters
is explained in a natural way. Here | shall briefly review some possibilities that
have been suggested in the literature.

6.3.1. Scalar Field Renormalization

Let us start with the scalar field model. Weinberg (2000) suggested that the
flatness of the potential could be due to a large field renormalization. Consider the
Lagrangian of the form

Y4
L=—
2

(V$)* = V(). (40)
The potential for the canonically normalized fighl= +/Z¢ will be very flat if
the field renormalization constant is very lar@e;> 1.

More generally, the effective Lagrangian #pmwill include nonminimal ki-
netic terms (Donoghue, 2000; Garriga and Vilenkin, 2000b),

L = SF@)V6) V(o). (a1)

Take for exampl& = e?/M. Then the potential for the canonical figld= Me?/M

is V(M In(y/M)). This will typically have a very small slope ¥ (¢) is a polyno-

mial function. It would be good to have some particle physics motivation either for
a large running of the field renormalization, or for an exponential fund&@p)

in the Lagrangian (41).

6.3.2. A Discrete Symmetry

Another approach attributes the flatness of the potential to a spontaneously
broken discrete symmetry (Dvali and Vilenkin, 2001). The main ingredients of the
model are (1) a four-form fieldF,,.,. which can be obtained from a three-form
potential, F .o = [, Awsr], (2) @ complex fieldX which develops a vacuum
expectation value(X) = n€’2, and whose phas@ becomes a Goldstone boson,
and (3) a scalar fielé which is used to break a discrefgy symmetry,

Zon: ® — oe™/N, a— —a(orX — XT), (42)
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Below the symmetry breaking scalesXfand®, the effective Lagrangian for the
model includes a mixing term of the Goldstame&vith the three-form potential,

<®>N VvoT
9'72—MN Y WY (43)
P
Here,g < 1is adimensionless coupling and itis assumed that the Planckipale

plays the role of the ultraviolet cutoff of the theory.
The effect of the mixing term (43) is to give a mass

(d)N
Mg

p=gn (44)
to the fielda. This mass can be made very small#) <« Mp and N is suf-
ficiently large. For example, withkd) ~ 1 TeV,n <« Mp and N > 6, we have
w < 10-9°Mp, as required.

Models of this type can also be used to generate branes with a very small
charge. In this casais assumed to be a pseudo-Goldstone boson, like the axion,
and the theory has domain wall solutions watichanging by 2 across the wall.

The mixing ofa and A couples these walls to the four-form field, and it can be
shown that the corresponding charge is

(@)
My

q = 27gy’ (45)
Once again, the anthropic constrainteis satisfied foK®) ~ 1 TeV,n <« Mp
andN > 6.

The central feature of this approach is thg, symmetry (42). What makes
this symmetry unusual is that the phase transformatiah isfaccompanied by a
charge conjugation aX. It can be shown, however, that such a symmetry can be
naturally embedded into a left—right symmetric extension of the standard model
(Dvali and Vilenkin, 2001).

6.3.3. String Theory Inspired Ideas

Fenget al. (2000) have argued that branes with extremely small charge and
tension can naturally arise due to nonperturbative effects in string theory. A poten-
tial problem with this approach is that the small brane tension and charge appear
to be unprotected against quantum corrections below the supersymmetry breaking
scale (Dvali and Vilenkin, 2001). The cosmology of this model is also problematic,
since it is hard to stabilize the present vacuum against copious brane nucleation
(Garriga and Vilenkin, 2000b).

A completely different approach was taken by Bousso and Polchinski (2000).
They assume that several four-form fiekjsare present so that the vacuum energy
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is given by
1 2
ov=p +_§i F2. (46)

The corresponding charggsare not assumed to be very small, but Bousso and
Polchinski have shown that with multiple four-forms the spectrum of the allowed
values ofpy can be sufficiently dense to satisfy the anthropic condition (38) in
the range of interest. However, the situation here is quite different from that in
the single-field models. The vacua with nearby valueg\ohave very different
values ofFj, and there is no reason to expect the prior probabilities for these
vacua to be similar. Moreover, the low energy physics in different vacua is likely
to be different, so the process of galaxy formation and the types of life that can
evolve will also differ. It appears therefore that the anthropic approach to solving
the cosmological constant problems cannot be applied to this case (Baalks
2000).

7. PREDICTION FOR THE EQUATION OF STATE

A generic prediction of models where both CCPs are solved anthropically is
that the dark energy equation of statd?is = wpy, where

w=-—1 (47)

with a very high accuracy. In models whergis the energy density of a four-form
field, this equation of state is guaranteed by the fact that the four-form energy
density is a constant and can only change by the nucleation of branes (other than
that, it behaves exactly like an additional cosmological constant).if a generic
scalar field potential, the slow roll conditions (27) and (28) are likely to be satisfied
by excess, by many orders of magnitude, rather than marginally. This implies the
equation of state (47).

This prediction is similar to the prediction of inflation that the density param-
eter isQ2 = 1. Although it is possible to adjust the inflaton potential so that the
requirement of flatness is only marginally satisfied, it is satisfied by a very wide
margin in generic models.

| finally note one more anthropic prediction, which is not likely to be tested
anytime soon. In all anthropic models,y can take both positive and negative
values, so the observed positive dark energy will eventually start decreasing and
will turn negative, and our part of the universe will recollapse to a big crunch.
Since the evolution ofpy is expected to be very slow on the present Hubble
scale, we do not expect this to happen sooner than in a trillion years from
now.
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8. CONCLUSIONS

| now summarize the predictions that follow from the anthropic approach to
the CCP’s.

1)

)

3)

(4)

The dark energy equation of state is predicted to be that of the vacuum,
Ry = wpy, (48)

wherew = —1 with a very high accuracy. This distinguishes the anthropic
models we discussed here from other approaches, such as quintessence
(Caldwellet al,, 1998; Peebles and Ratra, 1988; Wetterich, 1988; Zlatev
et al, 1999) ork-essence (Armeradiz-Piconet al., 2000).

The anthropic predictions for the dark energy denslty and for the
Hubble parametén. are given in Fig. 2. It shows the areas in f2¢ — h
plane that are excluded at hind 2r confidence levels. The excluded areas
depend on the assumed galactic mikand on the spectral indexof

the density fluctuations. Favl = 10*2M, the currently popular values

Qy = 0.7,h = 0.7 are marginally excluded at2confidence level for

a scale invariant spectrum= 1. Lowering the spectral index relaxes
the bounds somewhat. For> 0.65 andn > .95, the b prediction is

Qv > 0.79. These anthropic constraints get weaker when the relevant
mass scalé/l is increased. For example, witl = 4 x 10*°M,, a value

as low a2y = 0.63 is still allowed at the @ level for a scale invariant
spectrum. Thed prediction in this case iQy > 0.78 (forh > 0.65).
Conditions for intelligent life to evolve are expected to arise mainly in
giant galaxies that form (or complete their formation) at low redshifts,
351

The accelerated expansion will eventually stop and our part of the universe
will recollapse, but it will take more than a trillion years for this to happen.

The present bound on the equation of state paranvetéom the CMB
and supernovae measurements is (Betdl, 2002)w < —0.7, which is con-
sistent with the anthropic prediction ®f = —1. The value ofw = —1 is usu-
ally associated with a plain cosmological constant. However, if in addition to
this equation of state, observations confirm some of the other predictions pre-
sented above, this may be taken as an indication that the dark energy is dy-
namical and that it does take a wide range of values in remote parts
of the universe.
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